
VARIOUS METHODS OF PREPARATION OF MINERAL ACIDS
INTRODUCTION: Acids were derived from the latin word meaning sour , since they are associated with sour taste of various fruits. Three main inorganic or mineral acids are HYDROCHORIC ACID, NITRIC ACIDS, SULPHURIC ACID.
DISCOVERY
HYDROCLORIC ACID | NITRIC ACID | SULPHURIC ACID |
· A solution of hydrogen chloride gas was named as muriatic acid.
· In 1648 Glauber prepared HCl gas from rock salt and conc.H2SO4. · In 1772 Joseph Priestly obtained HCl in pure form and named its solution marine acid. · Later it was named muriatic acid by Lavoisier. · In 1810 Davy gave the name Hydrogen Chloride. |
· Initially it was known as aqua fortis in 8th century by Alchemists means strong water.
· Aqua fortis means it has result of its corrosive action on many metals. · In 1658 Glauber prepared HNO3 by distilling nitre [KNO3] with conc.sulphuric adid. · In 1784 Cavendish determined the composition of Nitric acid . |
· Initially it was called oil of vitriol.
· Initially it was prepared by distilling green vitriol [FeSO4.7H2O]. |
OCCURRENCE
HYDROCLORIC ACID | NITRIC ACID | SULPHURIC ACID |
R
|
· It occurs as free state during lightning discharge by following way:
N2 + O2 lightning discharge à 2NO 2NO + O2 2NO2 4NO2+ 2H2O + O2 à4HNO3 [NITRIC ACID –acid rain] 2HNO3+ CaCO3 Ca(NO3)2 + H2O + CO2. Soluble nitrates in soil. · In combined state as salts in minerals e.g. chile salt peter (NaNO3); bengal salt petre or nitre (KNO3).
|
· It occurs as free state in hot spring.
· It is also formed near sulphide beds e.g. by hydrolysis of iron pyrites. · In the combined form as it occurs as salt in minerals like metallic sulphate. |
LABORATORY PROCESS OF ACID PREPARATION
HYDROCHLORIC ACID | NITRIC ACID | SULPHURIC ACID |
· By synthesis or direct combination of
H2+ Cl2à2HCL (g) (explosive in direct sunlight ; negligible in the dark) moisture acts as a catalyst. · Metallic chloride + H2SO4(conc) <200°c à Metallic bisulphate + HCl(g) |
· Nitre + conc. H2SO4 <200°C HNO3 (vapour) + Potassium bisulphate.
· Chile salt petre + H2SO4 <200°c Sodium bisulphate + HNO3 (vapour) |
· S + HNO3 (conc) à 6NO2 + 2H2O + H2SO4
(conversion of HNO3 to H2SO4) · Cl2 + SO2 + 2H2O à 2HCl + H2SO4 · SO3 + H2O àH2SO4 · SO2Cl2+ 2H2O à H2SO4+ HCl |
EXPLANATION OF EACH LABORATORY PROCESS
1)HYDROGEN CHLORIDE
FIG#1 Simplified diagram of laboratory preparation of Hydrogen chloride
REACTANT | PRODUCT | EQUATION | FORMATION | PURIFICATION | COLLECTION |
Rock salt or sodium chloride (NaCl) | Sulphuric acid (conc) | NaCl + H2SO4 <200°c à NaHSO4 + HCl (g) | Gas is obtained in the round bottom flask, then passed to washer ottle for drying. | Washer bottle contains drying agent conc. H2SO4 which absorbs moisture. | Dry HCl gas is collected by the upward displacement of air as it is heavier than air. |
PRECAUTIONS :
- Reactions mixture is initially heated to control the evolution of HCl gas.
- Lower end of thistle funnel should dip below the acid in flask to obtain HCl gas properly otherwise it will escape out from the thistle funnel.
- Hydrogen chloride gas is extremely soluble in water .
- This gas is passed in water to make hydrochloric acid but if a delivery tube through which HCl gas is passed is directly immersed in water then the rate of absorption of HCl gas is high and partial vacuum is created.
- This phenomenon causes water to be pushed into delivery tube and damages the apparatus. This is called BACK SUCTION.
To prevent this problem special funnel arrangement is used for avoiding back suction. This arrangement
- Prevents or minimizes back suction.
- Provides a large surface area for absorption of hydrogen chloride gas.
- By this process pressure is equalized in both outer and inner side
FIG#2 Special funnel arrangement
Hence hydrochloric acid is not prepared in the laboratory by passing hydrogen chloride gas directly through water, but prepared using special funnel arrangement.
2) NITRIC ACID
FIG#3 Laboratory preparation of Nitric acid
REACTANT | PRODUCT | EQUATION | FORMATION | COLLECTION |
i) Nitre and conc. Sulphuric acid
ii) Chile salt petre + conc. Sulphuric acid.
– |
Potassium bi sulphate and Nitric acid (vapour).
Sodium bi sulphate + Nitric acid (vap) |
KNO3 + H2SO4(CONC) <200°c à KHSO4 + HNO3
NaNO3+ H2SO4 <200°cà NaHSO4 + HNO3 |
Volatile nitric acid vapour is collected in the receiver which is cooled from outside with cold water.
Volatile nitric acid vapour is collected in the receiver which is cooled from outside with cold water. |
Conc. Nitric acid vapours are condensed and collected in the water-cooled receiver.
Concentrated Nitric acid vapour is condensed and collected in the water-cooled receiver.
|
- PRECAUTIONS:
Complete apparatus is made up of glass as vapour of HNO3 is highly corrosive . - HCl cannot be used in the place of conc.H2SO4 as conc.H2SO4 is a strong non-volatile acid and produce HNO3 is a volatile acid; HCl is more volatile than HNO3.
- Reaction temperature must be less than 200°c as high temperature above 200°c may damage the apparatus, and also decomposes HNO3.
- More than 200°c may form hard residual Na2SO4
(2 NaNO3 + H2SO4 [conc.] >200°cà Na2SO4 + 2HNO3)
- Sodium sulphate is a poor conductor of heat and sticks to the glass, which cannot be removed from the apparat us easily.
INDUSTRIAL METHOD OF NITRIC ACID BY OSTWALD PROCESS
FIG#4 Ostwald’s process of nitric acid preparation
CHAMBER | REACTANT | CATALYST | TEMPERATURE | NATURE OF REACTION | EQUATION |
CATALYTIC CHAMBER | PURE DRY AMMONIA + DRY AIR | Platinum gauze | 700°c – 800°c | exothermic | 4NH3+ 5O2 à 4NO + 6H20 |
OXIDATION CHAMBER | NITRIC OXIDE + OXYGEN | Not required | 50°c | oxidation | 2NO + O2 à 2NH3 |
ABSORPTION TOWER | NITROGEN DI OXIDE + WATER + OXYGEN | Not required | Normal temperature | absorption | 4NO2 + 2H2O + O2 à 4NH3 |
FLOW CHART
FIG#5 Simplified fow chart of Ostwald’s process
PRECAUTIONS:
- In catalytic chamber 1 volume of pure dry ammonia and 10 volumes of dry air are used. Higher ratio of air is used as air is required in all the three reactions i.e. the reactions in the catalytic, oxidation and absorption tower.
- In catalytic chamber the catalyst platinum gauze is initially heated – as the reaction is exothermic in nature, the electrical heating is done initially only.
- The gases leaving the catalytic chamber are passed through cooling coils before entering the oxidation chamber to lower temperature since they facilitate easy oxidation of nitric oxide to nitrogen di oxide and they minimize the chances of any decomposition of nitrogen di oxide which may take place at higher temperature.
- The gases leaving the oxidation chamber enter the absorption tower which is packed with quartz in layers as quartz is acid resistant and quartz packing in layers slow down the movement of the gaseous NO2 entering from elow and initiates better salvation of nitrogen di oxide in water.
- Dilute nitric acid is concentrated by distillation or boiling until a constant boiling mixture is obtained.
INDUSTRIAL METHOD OF PREPARATION OF SULPHURIC ACID BY CONTACT PROCESS
FIG#6 Manufacturing process of Sulphuric acid by contact process
PARTS OF UNIT | FUNCTION | RELATED REACTION WITH DIAGRAM | |||||||||||||
A: PRODUCTION of SO2
i) BLOWER ii) SULPHUR OR PYRITE BURNER. |
i) For passage of purified air or oxygen.
ii) For production of sulphur di oxide by burning sulphur or iron pyrites. |
S + O2 è SO2
4FeS2 + 11O2 à 2Fe2O3 + 8 SO2 |
|||||||||||||
B: PURIFICATION UNIT (FOR PURIFICATION OF GASEOUS MIXTURE OF SO2 AND O2)
|
|
||||||||||||||
C: CATALYTIC OXIDATION (CONTACT TOWER) | For catalytic oxidation of SO2 to SO3 by passage of sulphur di oxide and oxygen through iron tower packed with vanadium pentoxide catalyst initially heated to 450°c. | 2SO2 + O2 ßà(V2O5)
2SO3 + HEAT CATALYST: Vanadium pentoxide or Platinum TEMPERATURE : 450°c – 500°c PRESSURE: 1 or 2 atm. CONVERSION RATIO: 98% SO2 converted to SO3. |
|||||||||||||
|
|
|
|||||||||||||
FIG#7 Summary of sulphuric acid manufacturing
PRECAUTION
- During burning of sulphur or iron pyrites oxygen is preferred to purified air since heat energy is wasted in heating the unreactive nitrogen components of the air.
- In purification unit the impurities of pyrite dust and arsenious oxide are removed to prevent deactivation of catalyst and reduction of efficiency.
- In contact tower catalytic oxidation takes place in presence of catalyst vanadium pentoxide (V2O5); this is preferred to platinized asbestos as a catalyst since it is comparatively cheaper and led easily poisoned.
- Catalyst is initially heated as catalytic oxidation which is an exothermic reaction and the heat produced maintains the temperature at 450°c – 500°c.
- The optimum pressure is about 1 to 2 atmosphere as high pressure favours a higher yield of sulphur tri-oxide.
- In the absorption tower the SO3 vapours are absorbed in conc.sulphuric acid and not in water. If SO3 is directly absorbed in water , then the reaction will be highly exothermic resulting in the production of dense fog of sulphuric acid particles which donot condense easily.
It’s reаlly a cool and useful piece of info. I’m happy thɑt you
just shared this useful infⲟ with us. Please stay սs informed like this.
Thanks for sharing.
thank you
Hello There. I discovered your blog the use of msn. That is an extremely smartly written article.
I will make sure to bookmark it and return to learn extra of
your helpful information. Thank you for the post.
I’ll certainly comeback.
thanks a lot
Hi friends, good piece of writing and nice arguments commented at this place, I am truly enjoying by these. Valaria Clyve Bandler
thank you
Great delivery. Great arguments. Keep up the great work. Kailey Sheffield Cyprio
I am in fact thankful to the owner of this web site who has shared this wonderful post at at this time. Wylma Kele Berny
thank you
Always a large fan of linking to bloggers that I appreciate but do not get a great deal of link adore from. Christie Richard Burrows
What a information of un-ambiguity and preserveness of precious experience regarding unexpected emotions. Carmella Rodney Jarlathus
Because the admin of this web site is working, no uncertainty very rapidly it will be famous, due to its feature contents. Paulette Maynard Awad
Everything is very open with a clear clarification of the issues. It was really informative. Your site is extremely helpful. Thanks for sharing. Faustine Mahmud Morita
I think you have noted some very interesting details , appreciate it for the post. Maritsa Dirk Andrew
You could certainly see your enthusiasm within the article you write. Debbie Mace Nicky
Thankfulness to my father who informed me regarding this weblog, this weblog is really awesome. Paulina Man Damales
Way cool! Some very valid points! I appreciate you writing this post plus the rest of the site is really good. Chiquita Iorgos Meyers
You made some decent points there. I viewed on the internet for the issue and found most individuals will accompany with your website. Hyacinthe Sebastien Greenquist
thanx
Wohh exactly what I was searching for, regards for posting. Dell Cchaddie Means
I visited many websites except the audio feature for audio songs present at this web page iss really fabulous. Frieda Burton Henka
Im grateful for the blog. Really thank you! Keep writing. Antonina Sax Alli
I enjoy the efforts you have put in this, thank you for all the great blog posts. Mirelle Raynard Hyams
I really like and appreciate your article post. Thanks Again. Keep writing. Diandra Frazer Fonville
Swewet blog! I found it while searching on Yahoo News. Claribel Jerome Simone
thanx
I absolutely love your blog.. Excellent colors & theme. Fredelia Chance Margalit
thanx
Way cool! Some very valid points! I appreciate you writing this write-up and also the rest of the website is also really good. Bari Bobbie Gilemette
Thank you for the information. Great job. I spent the last 20min having a good read of your content. Marni Ronnie Roybn
Excellent read, I just passed this onto a colleague who was doing some research on that. Kelci Raynard Gipsy
thanx
Just wanna comment on few general things, The website design and style is perfect, the content is very fantastic. Daphne Bern Pettifer
I visited several blogs except the audio feature for audio songs present at this web site is really wonderful. Beilul Hersh Jollenta
I really like it when folks come together and share opinions. Great site, stick with it. Glynnis Lew Sato
thanx
Very good post! We will be linking to this great content on our site. Courtenay Armin Poppas
thanx
The issue is that it will in general dry out, recoil and the delicateness may shield it from holding subtleties well. Harriett Chase Essa
Thanks-a-mundo for the blog post. Much thanks again. Really Great. Davida Vidovic Odawa
thnx
I reckon something truly special in this website.
thnx
Really nice design and good subject material. Please also check my website. I love cars!
thnx a lot